
UCRL-WEB-200719

EZSTORAGE

EZSTORAGE - 1

Table of Contents

Preface 3
Introduction 4
Overview 5

Storage Summary 7
STORAGE Interfaces 8

FTP: General File Transfers 8
NFT: Locally Enhanced Transfers 8
Additional Interfaces 9

Accessing STORAGE 10
Copies in Storage 11

Using FTP 12
Basic FTP Commands 12
FTP Example 14
FTP Pitfalls (with Storage) 16

Using NFT 18
NFT Command Syntax 18
NFT Commands by Task 19
NFT Example 20

Sharing Stored Files 21
Using Storage Groups 21
Setting Stored-File Permissions by Group 22
Reading Shared Stored Files 24

Macintosh File Transfer Problems 25
Macintosh File Format 25
Suntar's Role 26
Macintosh File Name Problems 27

Storage Assistance Tools 29
LSTORAGE (List Stored Files) 30
CHMODSTG (Change Storage Permissions) 32
CHGRPSTG (Change Storage Groups) 35
HTAR (Manage Stored File Collections) 38

Disclaimer 40
Keyword Index 41
Alphabetical List of Keywords 42
Date and Revisions 43

EZSTORAGE - 2

Preface

Scope: EZSTORAGE explains how to transfer files between machines where you work
(mostly LC production machines) and LLNL's High Performance Storage System (or
STORAGE, LC's central file-storage archive). Transferring files using FTP and NFT
as well as connecting to STORAGE from various locations is discussed. EZSTORAGE
also tells how to overcome the most common problems encountered when storing
and retrieving your files, including sharing stored files and storing Macintosh files.
Three customized (LC-only) storage-assistance tools to manage and monitor the
groups and permissions of your stored files are also introduced (LSTORAGE,
CHMODSTG, and CHGRPSTG), along with a fourth local tool (HTAR) that supports
the fast, efficient storage of very large archive (TAR-like library) files.

Availability: When the programs described here are limited by machine, those limits are included
in their explanation. Otherwise, they run under any LC UNIX system.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at

 OCF: http://www.llnl.gov/LCdocs/ezstorage/ezstorage.pdf
 SCF: https://lc.llnl.gov/LCdocs/ezstorage/ezstorage_scf.pdf

EZSTORAGE - 3

http://www.llnl.gov/LCdocs/ezstorage/ezstorage.pdf

Introduction
This manual provides a basic guide to effectively storing and archiving files from LC computers by

using the High Performance Storage System (HPSS). Its goal is to introduce relevant background
information, describe storage interface options, and give an overview of the basic commands used for
storage. The HPSS Manual (URL: http://www.llnl.gov/LCdocs/hpss) provides a detailed discussion of the
STORAGE system and its specialized features.

EZSTORAGE first provides an overview (page 5) of the strengths and weaknesses of LC's storage
system, including the software interfaces (page 8) compatible with STORAGE, a summary of STORAGE
commands (page 7), and accessing STORAGE (page 10) from various locations. The second section
explains how to save files using File Transfer Protocol (page 12)(FTP). The third section explains how to
save files using Network File Transfer (page 18) (NFT). The next section answers the common but complex
question of how to share stored files. (page 21) A subsequent section details file-storage problems (page
25) that may occur when moving files to and from a Macintosh computer. Finally, a concluding section
introduces three special storage-assistance (page 29) software tools to simplify managing your stored files,
along with another local tool (HTAR) that efficiently stores large archive (library) files or retrieves members
from within them while stored.

Reference manuals are available to provide detailed technical instructions on the tools and techniques
introduced in EZSTORAGE, including manuals on FTP (URL: http://www.llnl.gov/LCdocs/ftp), NFT
(URL: http://www.llnl.gov/LCdocs/nft), HPSS (URL: http://www.llnl.gov/LCdocs/hpss), HTAR (URL:
http://www.llnl.gov/LCdocs/htar), and the local Firewall (URL: http://www.llnl.gov/LCdocs/firewall).
Additionally the document EZFILES (URL: http://www.llnl.gov/LCdocs/ezfiles) is a basic guide for using
local directories and for general file-handling software at LC. (Because "secure FTP," called SFTP, relies
on a different server than standard FTP, you can not use SFTP to store files or retrieve stored files at LLNL.)

If FTP transfer rates and reliability are important concerns for you (because you store large files, for
example), then you can monitor recent FTP performance between many pairs of network nodes (including
storage.llnl.gov) by using LC's NETMON web site (see the NETMON Reference Manual (URL:
http://www.llnl.gov/LCdocs/netmon) for details). NETMON automatically reports all FTP traffic divided
by file size, using just the same file-size categories that HPSS uses to define each storage "class of service"
at LC (see "Copies in Storage" (page 11) below), and you can choose Mbyte or Mbit as the reporting unit.

EZSTORAGE - 4

http://www.llnl.gov/LCdocs/hpss
http://www.llnl.gov/LCdocs/ftp
http://www.llnl.gov/LCdocs/nft
http://www.llnl.gov/LCdocs/hpss
http://www.llnl.gov/LCdocs/htar
http://www.llnl.gov/LCdocs/firewall
http://www.llnl.gov/LCdocs/ezfiles
http://www.llnl.gov/LCdocs/netmon

Overview
Reliable, massive, archival data storage is a crucial part of any effective high-performance computing

environment. The good news is that LC has such storage (officially called the High Performance Storage
System, HPSS). The bad news is that layers of historically complex, asymmetric, security-driven interface
features can make using storage easy in some circumstances but almost impossible in others. This diagram
shows storage in its user context at LC:

LC's Geography of Storage Convenience
--
Hard Easy
(3) (2) (1) ---------------------------
 | STORAGE (HPSS) |
 -------------- | INTERFACE | RESOURCES |
 | LC | | FTP- | Disks, |
 | Production |--FTP--| based | Robotic |
 | Machines |--NFT--| only | Tapes |
 -------------- ---------------------------
 -------------- |
 | Other LLNL | |
 | Machines |--special steps-|
 | (Macs) | |
 -------------- |
--------------- |
| nonLLNL.GOV | |
| (offsite) |------complex transfers-----|
| Machines | re firewall |
--------------- |

Note first (right-hand side) that although the actual disk and tape resources for storing files at LC are
large and elaborate, the user interface here is constrained to use the FTP daemons exclusively. This means
that all your interactions with storage occur through FTP (or local FTP extensions such as NFT, parallel
FTP (PFTP), or HTAR). FTP is standardized and easy to learn, but for many typical storage tasks it is inept
or profoundly inelegant (the file-sharing (page 21) section below provides an extended example). Since
SFTP talks to a different, nonFTP daemon, you cannot store or retrieve files using SFTP.

Storing files from (or retrieving stored files to) LC production machines, open or secure, is a mainstream
storage mission (see (1) in the diagram), easy to perform and very reliable. Using file storage in this context
avoids quotas on user home directories, avoids purges of files on temporary work disks, and provides
virtually unlimited capacity for managing data or computational output. Transfer rates are fast (up to
gigabytes/sec) and FTP connections are very reliable. Customized FTP interfaces to handle special storage
needs (such as NFT for persistent storage transfers or HTAR for efficiently making large archives directly
in storage) are available here too.

Storing files from (or retreiving stored files to) other LLNL machines, in particular Macintosh desktop
or portable computers (see (2) in the diagram), is more complex. Features of special FTP clients (such as
Fetch) together with the need to protect unusual file formats during transfer to or from storage call for
taking extra steps, described in a separate section (page 25) below.

EZSTORAGE - 5

Finally, storing files from (or retrieving stored files to) nonLLNL.GOV machines (see (3) in the
diagram), such as computers at other sites or the workstations of distant ASCI collaborators, is the most
complicated of the three situations. It requires either using a two-stage process or running extra enabling
software (such as VPN). This may involve running FTP twice, or using nonFTP transfers to an LC production
machine before actually storing the files with FTP (run on an LC machine). The details, suggested in a
later section (page 10), call for entire separate manuals to explain thoroughly, and nevertheless often change
to reflect unsettled security goals.

So read the sections of EZSTORAGE with this guiding "geography of storage convenience" in mind.
Some storage tasks from some vantage points are easy and the introductory material here easily suffices
to cover them. Other storage tasks from other vantage points are elaborate or barrier-prone, and this guide
can only suggest the basic approach that might require much elaboration before you finally achieve success.

EZSTORAGE - 6

Storage Summary
This section briefly summarizes the chief storage-system constraints and tells how to perform the most

important file-storage tasks at LC. We suggest you save it for ready reference.

Storage System Constraints:

Largest allowed file size: 512 Gbyte (using FTP/NFT interface)
 8 Gbyte/member |(using HTAR
 no limit/archive | interface)
Longest file name: 255 characters
Problem characters in file names:
 Treated as file filters: ? * {a,b}
 Forbidden FIRST characters: - ! ~
 Forbidden in any position: ' " : ; { } , /

Commands for Common File-Storage Tasks:

NFTFTPTASK:
nftftp storageConnect to storage:
(same)mkdir drMake storage directory:
(same)cd drChange storage directories:
(same)put flStore a file:
(same)get flRetrieve a stored file:
See HTARSee HTARRetrieve from within a stored

archive:
(same)delete flDelete a stored file:
(same)dirList stored files:
chmod nnn flquote site chmod nnn flChange permissions (to nnn):
(none)site setcos nnnChange "class of service" (COS):
acladd etc.(none)Change access control list (ACL):
(none)quote site stage flStart migration of stored file from

tape:
Control file overwriting:

noclobber(none).....Prevent overwriting
clobber(default).....Allow overwriting

EZSTORAGE - 7

STORAGE Interfaces

FTP: General File Transfers

FTP is the most well known and generally supported file-transfer utility, therefore FTP clients and
(server) daemons are available on all LC production and special-purpose machines in both the open and
secure environments. FTP is the standard interface to the LC archival file storage system (both open and
secure). When you run FTP (on an OTP or DCE-passworded LC machine) with STORAGE as the target
host, access is "preauthenticated" and you are NOT prompted for your password. Also, on all LC production
machines (but not necessarily on other LC machines), a parallel FTP client (equivalent to PFTP) is now
the default. All files that are 1 Mbyte or larger automatically move to or from storage using parallel FTP.

A concise summary of how to use FTP commands and features to store files, with annotated examples,
is found in the Using FTP (page 12) section of this document (along with a subsection on known pitfalls).
For a detailed discussion of the user commands, software responses, and error codes for the FTP file-transfer
utility consult the FTP Reference Manual. (URL: http://www.llnl.gov/LCdocs/ftp)

NFT: Locally Enhanced Transfers

NFT is available on all LC production machines (open and secure, but not on some special-purpose
hosts) and is a locally developed file transfer tool. Although NFT uses standard FTP daemons to carry out
its file transfers, it offers such enhanced features as:

• A special NFT server preauthenticates all NFT transfers, so all NFT executions are passwordless.

• NFT elaborately tracks and numbers all transfers. It automatically persists if system problems delay
storing any file, and it keeps detailed records of your file-storage successes and problems.

• Input from and output to files is easy, and NFT's command syntax (unlike FTP's) lends itself to
practical use in scripts and batch jobs.

• Some NFT commands especially facilitate transfers to and from STORAGE (some users regard NFT
as primarily a file-storage rather than a general file-transfer tool). NFT but not FTP offers five
commands that manipulate access control lists (ACLs) on stored files.

A concise, task-oriented summary of how to use NFT commands and features, with annotated typical
examples is found in the Using NFT (page 18) section of this document. For a complete analysis of NFT
syntax and special features, along with a thorough alphabetical command dictionary, consult the NFT
Reference Manual (URL: http://www.llnl.gov/LCdocs/nft).

EZSTORAGE - 8

http://www.llnl.gov/LCdocs/ftp
http://www.llnl.gov/LCdocs/nft
http://www.llnl.gov/LCdocs/nft

Additional Interfaces

In addition to FTP and NFT, there are also other local tools that use FTP daemons for file transfer to
STORAGE through graphical interfaces. One for workstations is XDIR; one for Macintosh computers is
Fetch. Another, called HTAR (page 38), has been designed at LC primarily to efficiently transfer very
large archive (TAR-like library) files to and from STORAGE on LC production machines, or to extract
member files from within still-stored archives (you can optionally use HTAR for similar nonSTORAGE
transfers too).

NOTE: At LC, currently only STORAGE interfaces based on FTP daemons are supported (such as
FTP, PFTP, NFT, HTAR, XDIR, and Fetch). The Network File System (NFS) and IBM SP Parallel I/O
File System (PIOFS) interfaces are NOT available. And despite its name, "secure FTP" (SFTP) relies on
the SSHD2 daemon, not the standard FTP daemon, so you can NOT store or retrieve stored files at LLNL
using SFTP as an interface. However, executing FTP on any LC production machine (but not necessarily
on any other LC machines) is equivalent to executing PFTP (Parallel FTP) by default. Executing the PFTP
client overtly gives you access to nine special parallel-transfer commands (such as PPUT and PGET).
These extra PFTP commands are unnecessary on LC production machines (where ordinary FTP performs
parallel transfers to and from storage automatically) but if you use STORAGE at other ASCI (tri-lab) sites
you may need to invoke them (see the HPSS User Guide (URL: http://www.llnl.gov/LCdocs/hpss) for
details).

EZSTORAGE - 9

http://www.llnl.gov/LCdocs/hpss

Accessing STORAGE
Accessing STORAGE is most easily done from an LC production machine. Offsite users will encounter

difficulties in connecting to STORAGE because of interface limitations as well as intentional security
barriers to easy use.

When onsite, NFT and FTP can be used to transfer files to and from STORAGE. The NFT interface
is supported only by LC machines and can only be used to transfer files between them. It is not possible
to use NFT from a machine outside 134.n.n.n (including other llnl.gov machines and all onsite desktop
machines).

Offsite users can only use FTP. However, LC's firewall totally blocks all FTP traffic from every host
outside the llnl.gov domain. To transfer files from machines outside llnl.gov to any LC machine,
outside-the-firewall users have three choices:

(1) Log on to an LC production machine, then execute FTP on that machine and connect back to the
outside machine where the sought files reside, using GET to retrieve them. This approach poses known
problems for Macintosh files, and suggested solutions appear in the Macintosh problems (page 25) section.
It also requires an FTP server (not just a client) running on the outside machine, a problem for some
workstations. As a second stage, you must then run FTP on the llnl.gov machine again to transfer the files
to storage.

(2) Run secure copy SCP (described in EZOUTPUT (URL: http://www.llnl.gov/LCdocs/ezoutput))
instead of FTP to transfer files toward an open-network LC machine. You must have previously installed
SSH on the outside machine (LC's firewall allows SSH and SCP traffic from any IPA-authenticated outside
host). Since storage.llnl.gov has no SCP server, however, you must again run FTP on the LC machine as
a second stage to actually transfer your files to storage.

(3) Before you run FTP on your outside-the-firewall machine, get, install, configure, and execute a
Virtual Private Network (VPN) client on that machine. Contact the LC Hotline to see if you are authorized
to run a VPN client for access to LLNL. A VPN client borrows an llnl.gov IP address for your machine
while it runs, and LC has confirmed that if you run VPN and FTP together under Windows98, you can
directly transfer files to storage.llnl.gov from outside the firewall (no staging to an LC production machine
is needed). But you may encounter vendor-compatibility problems with other versions of Windows or with
other operating systems. See LC's Firewall and SSH Guide (URL: http://www.llnl.gov/LCdocs/firewall)
for full instructions on the fairly complex process of getting and using VPN to enable FTP. (You cannot
use SFTP through VPN to store or retrieve stored files.)

[A former alternative choice, obtaining a CRYPTOCard (URL: http://www.llnl.gov/LCdocs/firewall)
for authentification and contacting the firewall gateway (gw-lc.llnl.gov) before opening an (indirect) FTP
connection to any other LC machine, was discontinued for public use in April, 2000.]

Additionally, LC's firewall now blocks all TELNET (interactive login) traffic originating from nonLC
machines (from all machines outside 134.n.n.n, even from other llnl.gov machines), although it still allows
IPA-authenticated SSH traffic originating from those machines. Detailed instructions for the three choices
mentioned above, as well as a concise but thorough SSH overview, including role, annotated setup steps,
basic execute lines, and troubleshooting tips, are available in LC's Firewall and SSH Guide (URL:

EZSTORAGE - 10

http://www.llnl.gov/LCdocs/ezoutput
http://www.llnl.gov/LCdocs/firewall
http://www.llnl.gov/LCdocs/firewall
http://www.llnl.gov/LCdocs/firewall

http://www.llnl.gov/LCdocs/firewall). This manual is posted on both the open and secure LC documentation
web servers.

Copies in Storage
Some files may be so important to your project that you want to store separate, duplicate copies on

independent storage media (at LC, this means separate tape cartridges). LC's OCF and SCF storage systems
offer such dual-copy storage using the "class of service" (COS) concept.

The storage server(s) assign to every incoming file a class of service (COS) based on the file's size and
the client that writes it:

• Files written with FTP or NFT that are smaller than 32 Mbyte are automatically assigned a COS that
provides two separate copies on separate storage tapes. For these files you never need to request
duplicate storage.

• Files written with FTP or NFT that are 32 Mbyte or larger are assigned a COS that stores only a
single copy. For mission critical files in this category you can request dual-copy storage by using
the FTP command

 site setcos 150

before you PUT the large file(s) into HPSS. (There is no similar NFT command to change the default
COS.)

• Files written with HTAR, regardless of their size, always get a default COS that stores only a single
copy. For mission critical files written with HTAR you can request dual-copy storage by using the
(uppercase) command

 -Y 150

on the HTAR execute line that creates your stored archive (this overrides the HTAR_COS environment
variable).

(For more COS technical details, consult the SETCOS section of LC's HPSS User Guide. (URL:
http://www.llnl.gov/LCdocs/hpss) FTP monitoring with NETMON uses the same COS file-size distinctions;
see the next section.)

EZSTORAGE - 11

http://www.llnl.gov/LCdocs/hpss

Using FTP

Basic FTP Commands
FTP is a widely used file-transfer utility because it supports transfers between any machines that

recognize the TCP/IP protocols, even if they have different architectures or operating systems. You must,
however, log in to the remote machine and transfer the files interactively, using your (remote) password.

Because of the need for fast, reliable file transfers to and from STORAGE (i.e., storage.llnl.gov), that
host uses special FTP servers and other LC machines use special FTP clients that can preauthorize your
FTP login to STORAGE (only), so that no password is requested. All LC production machines (IBM SPs
and Compaqs) offer passwordless (preauthenticated) FTP service to STORAGE, and so also do a few
specialty machines such as LUCY. The usage is the same as standard FTP, except for omiting the password
request. Note also that on production LC machines, NFT, which favors the STORAGE system in several
ways, also offers passwordless file transfer to and from STORAGE (see the NFT (page 18) section for
details). Furthermore, on all LC production machines (but not necessarily on other LC machines), a parallel
FTP client (equivalent to PFTP) is now the default. See the FTP Reference Manual (URL:
http://www.llnl.gov/LCdocs/ftp) for instructions on invoking a nondefault nonparallel FTP client, which
is less verbose.

If FTP transfer rates and reliability are important concerns for you (because you store large files, for
example), then you can monitor recent FTP performance between many pairs of network nodes (including
storage.llnl.gov) by using LC's NETMON web site (see the NETMON Reference Manual (URL:
http://www.llnl.gov/LCdocs/netmon) for details). NETMON automatically reports all FTP traffic divided
by file size, using just the same file-size categories that HPSS uses to define each storage "class of service"
at LC (see the "Copies in Storage" (page 11) section above), and you can choose Mbyte or Mbit as the
reporting unit.

Most FTP implementations support many commands, but not always the same ones. The standard FTP
commands, with their syntax and error codes, are detailed in the FTP Reference Manual (URL:
http://www.llnl.gov/LCdocs/ftp). The following FTP commands are the most commonly used ones for
basic file transfer:

cd pathname changes directories (on the remote machine) to the one specified by pathname. By
default, FTP GETs files from and PUTs files to the home directory of the remote
machine, so you must change directories with CD if you need to transfer them to or
from somewhere else.

pwd reports the current working directory's pathname on the remote machine (to confirm
uses of CD).

dir lists the names and attributes of files in the current working directory on the remote
machine.

get remotefile [localfile]

retrieves remotefile and places it in the current directory of the local machine (where
you are running FTP). The incoming file is called remotefile by default, or called

EZSTORAGE - 12

http://www.llnl.gov/LCdocs/ftp
http://www.llnl.gov/LCdocs/netmon
http://www.llnl.gov/LCdocs/ftp

localfile if you specify a name. (Use HTAR (page 38) instead if you want to retrieve
a member file from within a still-stored archive.)

mget filelist generalizes the GET command to transfer all the files in filelist, a blank-delimited list
of remote files to retrieve to the current directory (where you are running FTP). MGET
accepts wildcards and prompts for your Y[ES] or N[O] response to each file name
before the corresponding transfer.

parallel [LLNL only] enables parallel file transfers on LC production machines. But remember
that parallel file transfers are already ON by default to or from STORAGE for all
files over 1 Mbyte (so typing PARALLEL here just reports the stripe width and block
size).

put localfile [remotefile]

copies localfile into the current working directory of the remote machine you have
logged in to with FTP. The outwardly transferred file is called localfile by default, or
called remotefile if you specify a name.

mput filelist generalizes the PUT command to transfer all the files in filelist, a blank-delimited list
of local files to copy to the home directory of the remote machine that you logged in
to with FTP. MPUT accepts wildcards and prompts for your Y[ES] or N[O] response
to each file name before the corresponding transfer.

delete remotefile

removes remotefile from the current working directory of the remote machine you
have logged in to with FTP. Use DIR to confirm your deletion.

mdelete filelist generalizes the DELETE command to remove all the files in filelist, a blank-delimited
list of remote files to delete from the current working directory on the remote machine.
MDELETE accepts wildcards and prompts for your Y[ES] or N[O] response to each
file name before the corresponding deletion. WARNING: see the known pitfall of
using MDELETE with wildcards to delete files from the LC storage system (subsection
below (page 16)).

help [command]

lists the commands supported by the implementation of FTP that you are running, or
(with an argument) briefly describes one command.

quit closes your remote session and terminates FTP.

EZSTORAGE - 13

FTP Example
This annotated example shows a typical file transfer to and from STORAGE using FTP.

GOAL: To transfer files to and from STORAGE interactively using FTP (the default parallel FTP
client). In this case, the local machine on which the user (JANE) executes the FTP client
is GPS17, and the remote machine that files are saved to and retrieved from is STORAGE

STRATEGY: (1) The user runs FTP (on GPS17) with storage.llnl.gov as the remote machine's domain
name.
(2) Because STORAGE is a special destination, its FTP server preauthenticates JANE
and asks for neither her user name nor her password (most other destinations ask for
both). This dialog is more verbose than that for most FTP sites and automatically enables
parallel file transfers.
(3) At the ftp> prompt, the user GETs file TEST5 (copies it from STORAGE to GPS17).
Note that FTP uses four simultaneous parallel stripes to move the file, automatically.
(4) At the next ftp> prompt, the user PUTs file TABLE.DAT (copies it from GPS17 to
STORAGE). Note that again FTP automatically uses four parallel stripes to move the
file more quickly.
(5) When the file transfers are done and confirmed, the user QUITs FTP.

(1) ftp storage.llnl.gov
 Connected to toofast15.llnl.gov
 220-NOTICE TO USERS [long legal disclaimer here...]
 220 toofast15 FTP server (HPSS 4.1 PFTPD V1.1.45
 Tue Sep 5 14:06:03 PDT 2000) ready.
 334 Using authentication type GSSAPI; ADAT must follow
 GSSAPI accepted as authentication type
 GSSAPI authentication succeeded

(2) Preauthenticated FTP to toofast15.llnl.gov as jane:
 230 User /.../spectrum.llnl.gov/jane logged in.
 Remote system type is UNIX.
 Using binary mode to transfer files.
 Daemon supports Parallel Features.
 -Auto-Parallel Substitution Enabled
 Parallel stripe width set to (4).
 Parallel block size set to (1048576).
 Multinode is Disabled.

(3) ftp> get test5
 200 Command complete (1827811,test5,0,1,131072).
 200 Command complete.
 200 Command complete.
 200 Command complete.
 200 Command complete.
 150 Transfer starting.
 226 Transfer complete. (moved = 1827811).
 1827811 bytes received in 0.20 seconds (9.10 Mbytes/s)
 200 Command complete.

EZSTORAGE - 14

(4) ftp> put table.dat
 200 Command complete.(7311244,table.dat,0,1,4194304).
 200 Command complete.
 200 Command complete.
 200 Command complete.
 200 Command complete.
 150 Transfer starting.
 200 PORT command successful.
 226 Transfer complete. (moved = 7311244).
 7311244 bytes sent in 1.85 seconds (3.96 Mbytes/s)
 200 Command complete.

(5) ftp> quit
 221 Goodbye.

EZSTORAGE - 15

FTP Pitfalls (with Storage)
FTP's "M" commands (such as MGET, MPUT, and MDELETE) process multiple files by using as

their argument either an explicit file list or a file filter (an implicit file list specified with one or more UNIX
wildcards or metacharacters, such as ? or *). The UNIX shell where your FTP client runs expands each
file filter (or "ambiguous file reference," such as TEST*) into a list of names for FTP to process.

But how that list is processed depends on the FTP server that receives it. Different servers may process
the expanded filter differently, with different file-transfer results. Thus the same FTP "M" command may
behave differently on different servers. When your valuable stored files are involved, and when the FTP
command is MDELETE (or any file-removal command), the results can sometimes be very inappropriate.

The diagram below illustrates how problems can arise because the LC storage server treats MDELETE
filters differently than do other FTP servers at LC.

Example of MDELETE filter handling by different LC servers

 Files and directories on server:
 testdir0
 |

 | | | |
 testfile1 testfile2 testdir1 testdir2
 | |
 ----------- --------------
 | | | |
 testfile3 testfile4 testfile5 testfile6

 Handling of MDELETE filter request:

 LC server In TESTDIR0, MDELETE *
 --------- ----------------------------------
 IBM | deletes testfile1 leaves testdir1
 COMPAQ| testfile2 testdir2
 LINUX | testfile3
 SUN | testfile4
 testfile5
 testfile6

 storage deletes testfile1 leaves testdir1
 (HPSS) testfile2 testdir2
 testfile3
 testfile4
 testfile5
 testfile6

Only the server on the LC storage system interprets MDELETE filters recursively, and removes all
(matching) files not only in the current working directory but also in the directory children of that directory
as well. (Interestingly, the LC storage server treats only MDELETE so aggressively; MPUT and MGET
still act just within the current directory.) You should always pay attention to this known pitfall when
deleting multiple stored files at LC using FTP as your storage interface.

You can work around this broad interpretation of FTP's MDELETE command by the LC storage server
in several ways:

EZSTORAGE - 16

• Use as your MDELETE argument an explicit list of files instead of a file filter with metacharacters.

• Use a more restrictive filter (certainly more restrictive than * alone), carefully crafted to select only
the files in the current working directory in storage (if your file-naming scheme allows).

• Use NFT (page 18) instead of FTP as your storage interface. NFT has no MDELETE command, and
its separate storage server interprets DELETE * to remove only files in the current working directory
(not in any child directories). You must invoke the -R suboption explicitly to make the NFT commands
DELETE and RMDIR behave recursively.

EZSTORAGE - 17

Using NFT

NFT Command Syntax
NFT (unlike FTP) was designed for the LC environment and it has two special features that affect how

you can use it.

First, all NFT file transfers involve not only the donor and the receiver machines you specify (overtly
or by default), but also a third invisible machine running locally developed software (ENDEAVOR)
dedicated to failure detection and recovery and NFT job tracking. If a problem prevents a file from being
sent or received immediately, ENDEAVOR automatically remembers the request and persists in trying to
complete it later, recording its results for you to verify if needed.

Second, NFT assumes that the remote host in all file transfers is the LC storage system (storage.llnl.gov)
unless you specify otherwise. The existence of such a default remote host means that:
(1) There are two types of NFT commands, (one for general file transfers among any hosts that NFT serves,
and one for those that do not accept NFT's usual host-specifying syntax because they default to storage
transfers) and,
(2) The syntax of NFT commands assumes local-to-storage transfers unless you specify otherwise.

NFT also has many special features that suit it for use in batch jobs and scripts (unlike FTP). The NFT
Reference Manual (URL: http://www.llnl.gov/LCdocs/nft) explains those unusual features, while its basic
commands pertaining to STORAGE are summarized here. Unlike FTP, NFT transfers involve no long
legal preamble and no increased verbosity when connecting to a parallel FTP server such as STORAGE.
Also unlike FTP, NFT provides five commands dedicated to manipulating the (optional) access control
lists (ACLs) on stored files (this is the only way that those who are not HPSS system administrators can
change ACLs in the storage system). (If you want to retrieve a member file from within a still-stored
archive, use HTAR (page 38) instead.)

EZSTORAGE - 18

http://www.llnl.gov/LCdocs/nft
http://www.llnl.gov/LCdocs/nft

NFT Commands by Task
This chart shows the interactive NFT commands that perform the most common file-transfer tasks. For

a detailed list of every NFT command, see the Command Dictionary (URL:
http://www.llnl.gov/LCdocs/nft/index.jsp?show=s9) in the NFT Reference Manual.

NFT CommandFile-Transfer Task
 GENERAL
cd aaa:newdirChange remote directory to newdir on aaa
cd :newdirChange local directory to newdir
cd newdirChange storage(*) directory to newdir
dir aaa:List remote directory contents on aaa
dir :List local directory contents
dirList storage(*) directory contents
cp :t1 aaa:t2Put (copy) local file t1 to remote host aaa as t2
cp aaa:t3 :t4Get (copy) remote file t3 from aaa as local file t4
cp aaa:t5 bbb:t6Transfer file t5 on aaa to file t6 on bbb (both remote)
delete t3Delete remote file t3 from storage
 STORAGE DEFAULTED(*)
put t1Store local file t1
put t1 t2Store local file t1 as t2
get t3Retrieve from storage file t3
get t3 t4Retrieve t3 as local file t4
acladd acl t1Add ACL(+) to stored file t1
aclclear t1Restore default ACL(+) to stored file t1
aclremove acl t1Remove ACL(+) entry from stored file t1
aclreplace acl t1Replace ACL(+) entry for stored file t1
aclshow t1Display ACL(+) for stored file t1
 CONTROL OPTIONS
noclobberPrevent all overwriting (default)
clobberAllow overwriting (for updates)
log logfileStart a log of NFT actions
clogClose the log file
open hostChange default remote host(*)
quit (*)Terminate NFT

(*)You can change NFT's default remote host from storage to something else by using the OPEN command,
but you should consult the OPEN command section (URL:
http://www.llnl.gov/LCdocs/nft/index.jsp?show=s9.26b) of the NFT manual before you rely on it.
(+)Access control list, for more fine-grained control than with UNIX permissions.

EZSTORAGE - 19

http://www.llnl.gov/LCdocs/nft/index.jsp?show=s9
http://www.llnl.gov/LCdocs/nft/index.jsp?show=s9.26b

NFT Example
This annotated example shows typical file transfers using NFT.

GOAL: To transfer files from a secure LC machine to STORAGE without logging on to all of
the machines, using NFT.

STRATEGY: (1) Start NFT. Notice that unlike FTP, you do not log on to any particular remote host to
"open a connection."
(2) Use storage-defaulted command PUT to transfer file t1 from the client machine (where
NFT runs) to storage.llnl.gov as file t2. Note that NO hosts are specified in this command
because the default location is STORAGE.
(3) Try to retrieve file t2 from STORAGE to local file t1 using the storage-defaulted GET
command. Becaue NFT's default environment is NOCLOBBER, this attempt fails (t1
already exists). You could use the CLOBBER option next, to allow this overwrite, or...
(4) Use GET to retrieve t2 from storage with no name change (and hence no overwriting
of t1).

(1) nft
(2) nft>put t1 t2
 4.0. 95 bytes sent in 1.0 seconds
 (0.1 Kbytes/s) from /g/g0/jfk/t1 to ~/t2
(3) nft>get t2 t1
 5.0. error. Cannot clobber existing sink.
 /g/g0/jfk/t1
(4) nft>get t2
 6.0. 95 bytes received in 1.8 seconds
 (0.1 Kbytes/s) from ~/t2 to /g/g0/jfk/t2
 nft>quit

EZSTORAGE - 20

Sharing Stored Files
Sharing some stored files with one or several other users is one of the most common storage goals yet

one of the hardest to achieve. This section explains the logic and reveals the many tedious steps needed
for sharing stored files. (You may want to consider using other file-sharing techniques available on LC
production machines. Consult the "File-Sharing Alternatives Compared" section of EZFILES (URL:
http://www.llnl.gov/LCdocs/ezfiles) for an overt analysis of several choices.)

All sharing of stored files on LC's HPSS system happens by means of storage groups. You and those
with whom you want to share stored files must first find or create a storage group to which you all belong,
you must assign the files to be shared and every parent directory of them to that common storage group,
and you must open the file and directory permissions (of the whole tree) to allow group reads (executes,
or writes). Even then, file-sharing is brittle and error prone.

The (sample) users, groups, directories, and files diagrammed here will be used to illustrate the
file-sharing steps described in the subsections below:

| user1 user2 user3 |
|--------------------------sgroup--|
 CHGRP/CHMOD
 .
 .
/users/u34/jfk..................
 /share............
 /share.in...
 share.out..
 share.code.

Using Storage Groups
A group is just a named set of users that agree among themselves to optionally allow (some of their)

files to be readable, or even writable, by all group members. Unfortunately, at LC online groups (e.g., on
GPS17) and storage groups are managed independently, and a file loses its group status at the time you
store it. So you must arrange the sharing of stored files by working exclusively with storage groups,
regardless of what separate online group arrangements you may have.

To discover the storage group(s) to which you belong, use the DCECP utility (Distributed Computing
Environment Control Program) on any LC production machine, as shown here (where uname is your user
name):

EZSTORAGE - 21

http://www.llnl.gov/LCdocs/ezfiles

 User: dcecp
 R/Us: dcecp> user show uname
 Rtne: {fullname {Leonora Florestan}}
 [four other data lines...]
 {groups group1, group2, group3...}
 [many other data lines...]
 R/Us: dcecp> quit

In this report, group1 is always the single-member group with the same name as your login name (and on
open HPSS it is often your only storage group).

To discover which other users also belong to any specific storage group (such as gname), use DCECP
again with a different command line:

 User: dcecp
 R/Us: dcecp> group list gname
 Rtne: /.../server/user1
 /.../server/user2
 /.../server/user3
 [other data lines...]
 R/Us: dcecp> quit

If you and the others with whom you intend to share stored files all belong to at least one storage group,
as revealed by running DCECP, then you can use that group and the commands in the next subsection to
enable file sharing in HPSS. If, however, the set of users who want to share stored files has no existing
storage group in common, then you must create one with the appropriate membership by using LC Form
SCF-2 (Create/Update Group) before you can take any further steps. Contact the LC Hotline; there is no
online or automatic way to avoid this group-creation paperwork.

Setting Stored-File Permissions by Group
Once you have the files you want to share and the name of a storage group to whom all sharing users

belong (see the previous subsection), you can follow these steps, all involving (somewhat unusual) FTP
commands, to enable the sharing of stored files:

(1) Open an FTP session to STORAGE.
All file-sharing arrangements require passing group and permission information to the storage system using
the indirect mechanism that FTP provides for such nonstandard activity.

 ftp storage

(2) Create a storage directory to hold the shared files.
In this example, the shared-files directory is called share and the shared file is called share.code (see also
the figure at the start of the file-sharing section), but these can obviously be generalized as you need. In
your FTP session type

 mkdir share

(3) Assign your storage home directory to the share group.

EZSTORAGE - 22

If your default arrival directory in storage is /users/u34/jfk and if the storage group containing all the
file-sharing users is sgroup, then use this indirect FTP command

 quote site chgrp sgroup /users/u34/jfk
to associate the two. One side effect is that you cannot share with two different groups at once. (You can
also change storage groups for any of these steps by using the special CHGRPSTG (page 35) tool, described
in a later section.)

(4) Assign your file-sharing directory to the share group.
Since you made the share directory as a child of /users/u34/jfk in step (2), you can now associate it too
with the file-sharing storage group sgroup:

 quote site chgrp sgroup share

(5) Assign group permisssions to the file-sharing directory.
To allow other members of storage group sgroup to read, write, and execute (list) the file(s) in the share
directory, use this indirect FTP command

 quote site chmod 775 share
to expand its default group permissions. (You can also change storage permissions for any of these steps
by using the special CHMODSTG (page 32) tool, described in a later section.)

(6) Store the files to be shared.
If you move (CD) to the file-sharing directory and PUT the file(s) to be shared, they will lose their online
permissions but they will arrive associated with the share group sgroup, which they inherit from the
file-sharing directory:

 cd share
 put share.code
 [more puts if there are more files to share]

(7) Assign group permissions to the file(s) to be shared.
Even if their online permissions allowed sharing by group, storing the file(s) erased those decisions. So as
with step (5) above, you need to declare the availablity of each file to the members of sgroup:

 quote site chmod 775 share.code

Because of the complexity of this process, some LLNL project teams have successfully petitioned the LC
Storage Group to create ad hoc, top-level directories through which they share stored files.

EZSTORAGE - 23

Reading Shared Stored Files
After you have used the previous two subsections to enable others in storage group sgroup to share the

file(s) in the share directory, they can follow these steps to retrieve those file(s):

 ftp storage
 cd /users/u34/jfk/share
 get share.code

Note that impatient attempts to directly GET file /users/u34/jfk/share.code (while in another storage
directory) may misleadingly fail with the message "no such file or directory." Even when successful,
sharing stored files in LC's HPSS archive is not trivial.

EZSTORAGE - 24

Macintosh File Transfer Problems
You can transfer files to or from an Apple Macintosh computer using FTP. The easiest, most reliable

way is to run an FTP client (such as Fetch) on the Macintosh itself. However, if the Macintosh lies outside
the llnl.gov domain, you will need to install and run a Virtual Private Network (VPN) client on your
machine to enable your FTP traffic to pass through LLNL's protective firewall. Alternatively, you can log
on to an LC machine (within llnl.gov) and execute an FTP client there that connects back to your Macintosh.
To do this your Macintosh computer will need an FTP server. You may need the help of your system
administrator to buy, install, and configure an FTP server for your Macintosh. (NCSA Telnet includes an
FTP server and is configured using the EDIT | PREFERENCES menu-bar choice.) See the Accessing
Storage (page 10) section above for some details; see the Firewall and SSH Guide (URL:
http://www.llnl.gov/LCdocs/firewall) for full details.

When transferring files between a Macintosh desktop computer and STORAGE two problems arise:
(1) Macintosh files have an unusual format that sometimes interferes with successful or appropriate file
transfer, especially for remote FTP clients.
(2) Some Macintosh file names are unsuitable for use after transfer to a UNIX machine. You may need to
change these names before (or during) transfer.

Macintosh File Format
Macintosh files consist of two parts, the data fork and the resource fork. In most (but not all) cases,

one fork is empty. Data files tend to use only the data fork, while executables tend to use only the resource
fork. This table shows the situation:

Resource Fork
(executables)

Data Fork
(text/binary data)

FTP Transfer
gets/puts text,
with conversion

.....ASCII

[needs Macbinary
conversion first]

gets/puts images,
no conversion

.....binary

The table also shows how these two-part files interact with FTP. FTP run in ASCII mode copies text
data to or from the data fork of a Macintosh file, with automatic format conversion. FTP run in binary
mode copies binary data (such as images) to or from the data fork, with no conversion.

Remote FTP clients never copy the contents of the resource fork unless you have previously converted
the file to a special format called Macbinary (which forces both data and resource forks of the original file
into the data fork of the converted file, to enable transfer). To convert and then transfer a Macintosh file
without spoiling the text data and nonexecutable binary data (such as GIF images or word processing
content) already in the data fork often requires special preprocessing. The SUNTAR freeware program for
the Macintosh, akin to TAR on UNIX machines, is one reliable way to meet this need.

EZSTORAGE - 25

http://www.llnl.gov/LCdocs/firewall

Suntar's Role
SUNTAR is a Macintosh freeware program modestly named after its creator ("Speranza's un-tar").

SUNTAR bundles and unbundles "archives" of files on a Macintosh, optionally converting their format
in the process, much like TAR on a UNIX system. Using SUNTAR before you transfer files from a
Macintosh to STORAGE (or after you return them to a Macintosh from STORAGE) lets you:
(1) Control the format conversions that may otherwise unexpectedly occur during FTP file transfers.
(2) Control what parts of Macintosh files are transferred, so nothing is lost.
(3) Enable the successful transfer of Macintosh executables and other special-format files (such as word
processing files) to LC storage, and their undamaged return later.

SUNTAR is available from several anonymous FTP servers around the world, including:

mirror.aol.com
username: ftp [NOT anonymous]
password: your e-mail address
mode: binary
CD to: /pub/info-mac/cmp
get: suntar-221.hqx

Executing SUNTAR offers a default configuration that you can accept for easy use. Brief documentation
comes with the program in two SimpleText files.

To transfer files from a Macintosh using SUNTAR and FTP to avoid the two-fork problem explained
above, follow these steps:
(1) On the Macintosh, execute SUNTAR.
(2) Select FILE | NEW ARCHIVE from SUNTAR's menu bar to create a new tar (archive) file, whose
name you can specify.
(3) Select WRITE | WRITE TAR FILE from the menu bar, and, when prompted for your choice, pick the
same file that you created in step (2).
(4) Select WRITE | WRITE format and each file that you pick will be converted to the format that you
specify (if necessary) and then copied into the archive you selected in step (3). Use Macbinary format for
files that will not be opened on any other machine; avoid Macbinary if you really need to extract the file
using TAR once you have moved the archive to a UNIX system.
(5) Quit SUNTAR.
(6) On a remote machine, execute FTP. Then connect to your Macintosh, request BINARY mode, and
GET the archive file that you created and stocked using SUNTAR. You can store this file (use BINARY
again) or open it with TAR, but any Macbinary- encoded files within it cannot be used except on a
Macintosh.

To return a SUNTARed archive file from STORAGE to a Macintosh (or another LC UNIX machine)
and restore its component files for use, follow these steps:
(1) On a remote machine, execute FTP. Then connect to your Macintosh, request BINARY mode, and
PUT the archive file that you (previously) created and stocked using SUNTAR. Quit FTP.
(2) On the Macintosh, execute SUNTAR.
(3) Select FILE | OPEN FILE/DECODE from the menu bar and then pick the archive file that you just
FTPed.
(4) Select FILE | LIST to report the contents of the archive file in a "console window," quite the way TAR
lists contents under UNIX.

EZSTORAGE - 26

(5) Select FILE | EXTRACT SELECTED FILES to pick from a menu of files within the archive the one(s)
to extract (and convert if necessary), into a folder that you specify. These are now ready for use on the
Macintosh, as if they had not been transferred.
(6) Select FILE | QUIT to end SUNTAR when your file extractions are finished.

Macintosh File Name Problems
The Macintosh OS supports file names that contain blanks (spaces) or nonASCII characters (for example,

 Memo to Fred
is an acceptable Macintosh file name). Names containing such characters are not supported by UNIX and
will cause file loss or serious mishandling on LC's UNIX production machines, on the UNIX- based storage
system, and on the open-secure File Interchange Service with UNIX nodes on each end. You must therefore
change all blank-containing Macintosh file names to consist of ASCII characters without blanks, such as

yMemoToFred
memo.to.fred
memo_to_fred

before (or during) the transfer of these files from a Macintosh to a UNIX machine.

If you are able to run Fetch, the FTP Macintosh client, you can change a file's name during the transfer
process itself:
(1) Execute Fetch on your Macintosh.
(2) Click the PUT FILE button, highlight the (Macintosh) name of the file you want to transfer from the
offered list, and click the OPEN button.
(3) When the dialog box appears offering to "save file on unix.gov as:" then
(a) delete the Macintosh name containing blanks,
(b) supply (type in) a suitable UNIX name without blanks, and
(c) click on OK to transfer the file so it arrives with its new name on the UNIX target machine.

EZSTORAGE - 27

If instead you run an FTP client on a remote (UNIX) machine to transfer files from your Macintosh,
you must change all problematic file names BEFORE you begin the transfer process (quoting a file name
containing blanks is NOT adequate compensation for most FTP clients). On the Macintosh, open each file
with a word processor and use the FILE | SAVE AS menu choice to make a copy whose new name contains
no blanks or nonASCII characters. Then execute FTP on the remote machine and transfer from the Macintosh
the newly renamed copies for reliable use under UNIX.

EZSTORAGE - 28

Storage Assistance Tools
LC's Tru64 Compaq computers (for example, the nodes of the open GPS cluster and the secure SC

cluster), all the massively parallel IBM production machines, and also the Linux/CHAOS machines offer
three public, user-developed programs to handle three common storage tasks more conveniently than is
possible with FTP or NFT. In fact, these storage assistance tools perform some helpful tasks (such as
recursive changes on stored files) not possible with FTP (NFT offers a suboption, -R, that you can invoke
to recursively change stored files).

These special storage tools and their roles are:

lstorage lists your storage directories and stored files in any of several formats, recursively if
you request.

chmodstg changes the UNIX permissions on your storage directories or your stored files,
recursively and symbolically if you request.

chgrpstg changes the (storage) group for your storage directories or your stored files (to enable
file sharing), recursively if you request.

All are located in /usr/local/bin on the machines where they they have been installed (so most users
can run them just by typing their names).

WARNING: Because all three storage-assistance tools are really Perl scripts, they yield very verbose
and confusing error messages if you happen to run them when the LC storage system (either open or secure)
is offline for maintenance.

In addition, LC provides a special-purpose front-end to parallel FTP that is customized to very efficiently
store and retrieve large archive (TAR-format library) files. This combination file bundler and fast STORAGE
interface is called HTAR. A short subsection below introduces HTAR's features and syntax, while LC's
separate HTAR Reference Manual (URL: http://www.llnl.gov/LCdocs/htar) gives a thorough analysis of
both good usage and known pitfalls. HTAR also offers the unique ability to retrieve a member file from
within a still-stored archive, even without staging the archive from tape to disk in HPSS.

EZSTORAGE - 29

http://www.llnl.gov/LCdocs/htar

LSTORAGE (List Stored Files)
EXECUTE LINE.

LSTORAGE lists your storage directories and the files that they contain. To run LSTORAGE on the LC
production machines where it is installed, type

lstorage [options] [dirnames]
By choice of LSTORAGE options you can specify output format (single or multiple colunms), output
scope (local or recursive), and level of detail (names only or other information too). The basic pattern for
using LSTORAGE options is:

 Recursive Nonrecursive

 |
 Single | -lR, -j -l
 column |
 |
 Multiple | -R default,
 column | -C

Because LSTORAGE runs noninteractively, redirecting its output to a file for later reuse is easy (e.g.,
lstorage > outfile).

DEFAULTS.
Without a specified directory, LSTORAGE reports on your top-level ("home") storage directory. Without
options, LSTORAGE lists (only) the names of files and directories contained in the specified storage
directory, in multiple columns. If you specify a space-delimited list of several target storage directories
(all names relative to your home storage directory), LSTORAGE reports on each one in the order in which
you listed them on the execute line.

SPECIAL BENEFITS.
LSTORAGE takes the place of using FTP's DIR or LS options. Unlike FTP, LSTORAGE avoids the long
warning message, can make recursive reports, is easy to redirect, and can report on several storage directories
at once.

TYPICAL USES.

lstorage -lR > storage.list

places into the file storage.list a detailed, recursive report on all of your storage
directories and stored files (and their properties), starting with your "home" storage
directory and working down the tree.

lstorage -j project2/admin

lists the names (only) of your storage directories, subdirectories, and stored files
starting with the project2/admin directory and continuing recursively downward
through the tree. The list is a single column indented at every new level to reveal
nesting.

EZSTORAGE - 30

OPTIONS.

Scope options:

-a lists all directories and files, including those whose names begin with a dot(.).
NOTE: on the one hand, listing stored files such as .cshrc is default behavior for
LSTORAGE even without invoking -a; on the other hand, even with -a invoked the
list still omits the single and double dot (. and ..) entries that FTP's DIR reports.

-l (lowercase ell) lists in long format, with details on the permissions and groups for
every storage directory or stored file covered in the report.

-R recursively includes all the children (subdirectories and stored files) of the directory
specified on the execute line (compare with -j).

Format options:

-C (default) lists storage directories and stored files in multiple columns with entries
sorted down the columns.

-j lists storage directories and stored files recursively (entails -R) in a single column
with nesting revealed by extra indenting (names only).

-h displays the LSTORAGE help package (a brief list of options). Help cannot be
combined with any other options.

-t sss sets the LSTORAGE timeout to sss seconds (default timeout is 300 seconds).

EZSTORAGE - 31

CHMODSTG (Change Storage Permissions)
EXECUTE LINE.

CHMODSTG changes the permissions on your storage directories or your stored files. To run CHMODSTG
on the LC production machines where it is installed, type

chmodstg [options] [dirname]
By choice of CHMODSTG options you can specify the desired permissions for a specific storage directory,
a specific stored file, all files in a directory, or (recursively) all children of a specific directory to all levels.
You can also specify uninterrupted, noninteractive changes or instead request interactive prompting for
your desired permissions and files (with optional report on each change made). The basic pattern for using
CHMODSTG options is (all except -s can be combined with -R for recursive scope):

 Prompts No prompt
 | For perms | For perms |
 | only | and files |

 | | |
No | default, | -i | -F perm -D perm
reports | -f, -d, -s | |
 | | |
Report | -v or | -v or
results | lstorage -l | lstorage -l

DEFAULTS.
Without a specified directory, CHMODSTG acts on your top-level ("home") storage directory. Without
permission-related options (e.g., chmodstg -R dir1), CHMODSTG prompts for your desired directory and
file permissions and then changes both with no confirmation.

SPECIAL BENEFITS.
CHMODSTG takes the place of using FTP's QUOTE SITE CHMOD indirect command. Unlike FTP,
CHMODSTG avoids the long warning message, can make recursive changes, and accepts symbolic rather
than only octal permissions.

TYPICAL INTERACTIVE USES.

chmodstg -R project2/admin

announces that CHMODSTG will act recursively starting from the specified directory,
prompts for your desired permissions on storage directories, prompts (separately) for
your desired permissions on stored files, then changes the permissions without
confirmation.

chmodstg -iR project2/admin

same as above (for -R), but also prompts for your yes/no choice for each directory
and file processed.

EZSTORAGE - 32

chmodstg -ivR project2/admin

same as above (for -iR), but also reports the specific change made for every file (e.g.,
"changed from 750 to 700") as it occurs.

TYPICAL NONINTERACTIVE USES.

chmodstg -D775 project2/admin

assigns permission 775 to all subdirectories of the specified storage directory (use -s
to change that directory itself), without prompting or confirmation.

chmodstg -D750 -F650 -R project2/admin

starts at the specified directory and recursively assigns 750 to every subdirectory and
650 to every stored file encountered as it works down the tree, without prompting or
confirmation.

SPECIFYING PERMISSIONS:
CHMODSTG accepts permissions as either three-digit octal numbers (exactly three digits, no spaces) or
as a comma-delimited list of symbolic triples (e.g., u+x,g-w) built up from the UNIX components [augo],
[+-], and [rwx]. (FTP accepts only the octal format.) Users unfamilar with either style of specifying
permissions can read a concise, overtly diagrammed summary of both in the "How to Specify Permissions"
section of the EZFILES (URL: http://www.llnl.gov/LCdocs/ezfiles) basic guide.

OPTIONS.

Permission options:

-Fperm specifies (in either octal or symbolic format) the UNIX permissions perm to assign
to every stored file (but not directories) that CHMODSTG treats during this run, as
selected by other options. This disarms the file-permissions prompt.

-Dperm specifies (in either octal or symbolic format) the UNIX permissions perm to assign
to every storage directory (but not stored files) that CHMODSTG treats during this
run, as selected by other options. This disarms the directory-permissions prompt.

Scope options:

-f changes file permissions only (omits directories). CHMODSTG prompts you for the
desired permissions. The default without -f or -d is to change both.

-d changes directory permissions only (omits files). CHMODSTG prompts you for the
desired permissions. The default without -f or -d is to change both.

-s pathname changes permissions only for the one directory or file specified by its pathname
(relative to your home storage directory). Using -s disables all other CHMODSTG
options except -v, so CHMODSTG always prompts for your desired permissions even
if you include -F or -D on the execute line.

EZSTORAGE - 33

http://www.llnl.gov/LCdocs/ezfiles

-R recursively includes all the children (subdirectories and stored files) of the directory
specified on the execute line. You can combine -R with other options (except -s) to
further control CHMODSTG's scope of action.

Interaction options:

-i prompts for your yes/no confirmation for every directory or stored file that
CHMODSTG tries to change (regardless of whether you also want prompting for
desired permissions). Any response except YES is treated as NO; you can NOT supply
different permissions for different files by using -i.

-v interactively reports the permission change made for every directory or stored file
that CHMODSTG changes (e.g., "changed from 650 to 700"). You can combine -v
with CHMODSTG's various prompting options, or use it for confirmations even
without prompts.

-s is a scope option (see above) but always behaves interactively, even if you try to
disable its prompts.

-h displays the CHMODSTG help package (a brief list of options). Help cannot be
combined with any other options.

EZSTORAGE - 34

CHGRPSTG (Change Storage Groups)
EXECUTE LINE.

CHGRPSTG changes the (storage) group for your storage directories or your stored files. To run
CHGRPSTG on the LC production machines where it is installed, type

chgrpstg [options] groupname [dirname]
There is no prompt or default for the desired groupname, which you must specify on every CHGRPSTG
execute line. (To discover your current storage groups, run DCECP on any LC production machine and
reply to its prompt with the request:
user show yourlogin
See the Sharing Stored Files (page 21) section for details and examples.) Most CHGRPSTG invocations
run noninteractively, but you can request prompting or confirmatory reports, alone or together with recursive
execution, by following this pattern of options:

 Recursive Nonrecursive

 Prompts and | -ivR | -iv
 reports | |
 | |
 No prompts | -R | default
 or reports | |

DEFAULTS.
Without a specified directory, CHGRPSTG acts on your top-level ("home") storage directory. Without
options, CHGRPSTG changes the group for one "layer" in your storage hierarchy (for every member of a
specified directory but not the directory itself nor the children of its subdirectories). See the comparative
example below.

SPECIAL BENEFITS.
CHGRPSTG takes the place of using FTP's QUOTE SITE CHGRP indirect command. Unlike FTP,
CHGRPSTG avoids the long warning message, can make recursive changes, and can (optionally) treat just
files or just directories at any level in your storage hierarchy.

TYPICAL INTERACTIVE USES.

chgrpstg -ivR newgrp project2/admin

announces that CHGRPSTG will act recursively starting from the specified directory,
prompts for your yes/no choice for each directory and file processed, and reports the
specific change made for every file (e.g., "changed from oldgrp to newgrp") as it
occurs.

EZSTORAGE - 35

TYPICAL NONINTERACTIVE USES.

chgrpstg -s newgrp project2/admin

(change exactly one directory) changes the storage group only for the single directory
specified. Note the different syntax from CHMODSTG (group name precedes
pathname).

chgrpstg newgrp project2/admin

(change one "layer," the default) changes the storage group for all files and directories
within the specified directory, but not for that directory itself nor for any children of
its subdirectories.

chgrpstg -R newgrp project2/admin

(change all layers) changes the storage group for all files and directories within the
specified directory, and also for all of its children working recursively down your
storage hierarchy.

OPTIONS.

Scope options:

-f changes file groups only (omits directories). The default without -f or -d is to change
both.

-d changes directory groups only (omits files). The default without -f or -d is to change
both.

-s groupname pathname

changes groups only for the one directory or file specified by its pathname (relative
to your home storage directory). Using -s disables all other CHGRPSTG options
except -v. Note the syntax difference from CHMODSTG: here, the group name
precedes the pathname immediately after -s.

-R recursively includes all the children (subdirectories and stored files) of the directory
specified on the execute line. You can combine -R with other options (except -s) to
further control CHGRPSTG's scope of action.

Interaction options:

-i prompts for your yes/no confirmation for every directory or stored file that
CHGRPSTG tries to change. Any response except YES is treated as NO; you can
NOT supply different groups for different files by using -i.

-v interactively reports the group change made for every directory or stored file that
CHGRPSTG changes (e.g., "changed from oldgrp to newgrp"). You can combine -v
with CHGRPSTG's -i prompting option, or use it for confirmation reports even without
prompts.

EZSTORAGE - 36

-h displays the CHGRPSTG help package (a brief list of options). Help cannot be
combined with any other options.

EZSTORAGE - 37

HTAR (Manage Stored File Collections)
ROLE.

On LC production machines (but not at other ASCI sites), HTAR is a separate, locally developed utility
program that serves as a special-purpose front end to PFTP for storage access. HTAR combines a flexible
file bundling tool (like TAR) with fast parallel access (PFTP) to open and secure STORAGE, to let you
store and selectively retrieve even very large sets of files very efficiently. (Invoking HTAR's -F option lets
you generalize these features for fast, file-bundled transfer to nonSTORAGE locations as well.)

FEATURES.
HTAR's enhanced features include:

• Uses a TAR-like syntax and supports TAR-compatible archive files by relying on the POSIX 1003.1
TAR file format.

• Bundles files in memory using multiple concurrent threads and transfers them into an archive file
built directly in storage by default, to avoid needing extra local online disk space.

• Takes advantage of available parallel interfaces to storage to provide fast file transfers (measured at
as high as 150 Mbyte/s, over 30 times the typical rate for transferring small files separately).

• Uses an external index file to easily accommodate thousands of small files in any archive, and to
support retrieval of specified files from within a still-stored archive without first retrieving the whole
archive from HPSS. (WARNING: you can use filters such as * to create an HTAR archive but you
CANNOT reliably use filters to retrieve files from within an already stored HTAR archive. See the
"Retrieving Files" section of the HTAR Reference Manual (URL: http://www.llnl.gov/LCdocs/htar)
for possible workarounds.)

• Imposes no limit on the total size of the archives that it builds (some have successfully reached 200
Gbyte) and accepts input files (archive members) as large as 8 Gbyte.

EXECUTE LINES.
When the storage system (HPSS) is up and available to users you can execute HTAR with a command line
that has the general form

htar action archive [options] [filelist]
and the specific form

htar -c|t|x|X -f archive [-BdEFhHILmMopSTvVwY] [flist]
where exactly one action and the archive are always required, while the control options and (except when
using -c) the filelist can be omitted (and the options can share a hyphen flag with the action for convenience).
Users familiar with TAR can guess how to run HTAR from this model (although there are some tricky
syntax differences). Others should consult the HTAR Reference Manual (URL:
http://www.llnl.gov/LCdocs/htar) for usage suggestions, annotated examples, technical tips, full option
details, and known problems.

One unusual feature of HTAR lets you not only avoid retrieving an entire archive from storage before
extracting specified member files from within it, but also lets you (optionally) avoid even staging
tape-resident archive files to HPSS disk before extracting specified members directly to your local machine.
The NOSTAGE suboption of HTAR's -H (uppercase) control option lets you quickly retrieve (small) files

EZSTORAGE - 38

http://www.llnl.gov/LCdocs/htar
http://www.llnl.gov/LCdocs/htar

from within a (much larger) stored-on-tape archive file, while leaving the archive on tape. For example,
to retrieve file TEST5 from within the archive MYPROJ.TAR, stored in the PROJECTS subdirectory of
your HPSS home directory, while leaving the whole archive still stored on tape, you could use

htar -x -f projects/myproj.tar -H nostage test5

EZSTORAGE - 39

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2004 The Regents of the University of California. All rights reserved.

EZSTORAGE - 40

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 42).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in EZSTORAGE.
availability Where these programs run.
who Who to contact for assistance.

introduction Role and goals of EZSTORAGE.

overview LC storage strengths and weaknesses.
storage-summary Storage system constraints and common commands.
storage-interfaces Descriptions of STORAGE access pathways.

ftp-overview Brief description of FTP interface.
nft-overview Brief description of NFT interface.
additional-interfaces Alternative interface options.

accessing-storage Offsite access strategies compared.
storage-copies Multiple copies of same stored file.

ftp Using FTP to transfer files.
file-transfer-protocol Using FTP to transfer files.
ftp-commands Basic FTP options explained.
ftp-example Sample file transfer with FTP.
ftp-pitfalls Wildcard dangers with stored files.

nft Using NFT to transfer files.
network-file-transfer Using NFT to transfer files.
nft-syntax Specifying sec. levs, hosts with NFT.
nft-commands Basic NFT options by task.
nft-example Sample file transfer with NFT.

sharing-files Sharing stored files.
file-sharing Sharing stored files.
storage-groups Using storage groups.
permissions Setting permissions by storage group.
reading-shared-files Sharing by the reader.

macintosh-problems Known Macintosh file-transfer problems.
file-format Two fork Macintosh file format.
suntar Macintosh suntar aids file transfers.
file-name-problems Changing file names containing blanks.

storage-tools Three LC storage-helper tools.
lstorage Tool to list stored files.
chmodstg Tool to change storage permissions.
chgrpstg Tool to change storage groups.
htar Tool to bundle files into storage archives.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

EZSTORAGE - 41

Alphabetical List of Keywords

Keyword Description
------- -----------

a The alphabetical index of keywords.
accessing-storage Offsite access strategies compared.
additional-interfaces Alternative interface options.
availability Where these programs run.
chgrpstg Tool to change storage groups.
chmodstg Tool to change storage permissions.
date The latest changes to EZSTORAGE.
entire This entire document.
file-format Two fork Macintosh file format.
file-name-problems Changing file names containing blanks.
file-sharing Sharing stored files.
file-transfer-protocol Using FTP to transfer files.
ftp Using FTP to transfer files.
ftp-commands Basic FTP options explained.
ftp-example Sample file transfer with FTP.
ftp-overview Brief description of FTP interface.
ftp-pitfalls Wildcard dangers with stored files.
htar Tool to bundle files into storage archives.
index The structural index of keywords.
introduction Role and goals of EZSTORAGE.
lstorage Tool to list stored files.
macintosh-problems Known Macintosh file-transfer problems.
network-file-transfer Using NFT to transfer files.
nft Using NFT to transfer files.
nft-commands Basic NFT options by task.
nft-example Sample file transfer with NFT.
nft-overview Brief description of NFT interface.
permissions Setting permissions by storage group.
reading-shared-files Sharing by the reader.
nft-syntax Specifying sec. levs, hosts with NFT.
overview LC storage strengths and weaknesses.
revisions The complete revision history.
scope Topics covered in EZSTORAGE.
sharing-files Sharing stored files.
storage-copies Multiple copies of same stored file.
storage-groups Using storage groups.
storage-interfaces Descriptions of STORAGE access pathways.
storage-summary Storage system constraints and common commands.
storage-tools Three LC storage-helper tools.
suntar Macintosh suntar aids file transfers.
title The name of this document.
who Who to contact for assistance.

EZSTORAGE - 42

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
17Feb04 storage-summary
 COS and ACL commands added.

ftp-pitfalls Recursive NFT deletes now enabled.
nft-syntax Five new ACL commands noted.
nft-commands Five ACL commands added to table.
nft-example Dialog updated, details added.

18Nov03 htar Speed and size details updated.
storage-summary

 Maximum file size updated.

11Aug03 storage-summary
 Cross ref. to HTAR added.

ftp-commands Cross ref. to HTAR added.
nft-syntax Cross ref. to HTAR added.
htar NOSTAGE feature explained, illustrated.

12May03 introduction NETMON units user controlled now.
ftp-commands PARALLEL has altered role.
storage-tools Now under Linux/CHAOS too.

19Feb03 introduction SFTP is not a storage interface.
overview SFTP is not a storage interface.
additional-interfaces

 SFTP is not a storage interface.

21Nov02 introduction FTP monitored by class of service now.
ftp-commands FTP monitored by class of service now.
storage-copies Another role for COS noted.

08Oct02 storage-tools Forest departs, availability clarified.

17Jun02 ftp-pitfalls New section with MDELETE warning.
ftp-commands DELETE, MDELETE added.
nft-commands DELETE added.
storage-copies New section on duplicate copies.
storage-summary

 Maximum file size FTP vs. HTAR.
index New keywords for new sections.

02May02 htar Warning added on HTAR retrievals.

05Feb02 introduction NETMON cross reference added.
ftp-commands NETMON cross reference added.
ftp-example Example dialog updated.
storage-tools Not available under Linux.
storage-groups WEST reference replaced.

27Aug01 overview HTAR role added.
scope HTAR availability noted.
storage-tools HTAR role added.
htar New summary section added.

EZSTORAGE - 43

index New keyword for new section.

09Jul01 overview PFTP role added.
storage-interfaces

 Automatic parallel FTP to storage.
 PFTP for storing files elsewhere.

ftp-commands PARALLEL local command added.
ftp-example Automatic parallel transfers shown.

17Apr01 overview VPN role noted for offsite FTP.
accessing-storage

 Three strategies revised re VPN, IPA.
macintosh-problems

 VPN role noted for offsite FTP.

26Mar01 ftp-overview Parallel client now the default.
ftp-commands Parallel client now the default.
ftp-example Verbose, preauthenticated parallel dialog.
nft-syntax No verbosity change for NFT.

25Sep00 sharing-files Link to file-sharing comparison added.

01Aug00 storage-tools Now on all LC production machines.

22May00 storage-tools LSTORAGE, CHMODSTG, CHGRPSTG explained.
introduction New sections cross referenced.
sharing-files Relevant new tools cited.
index New keywords for new sections.

11Apr00 availability Revised print-file instructions.
overview FTP gateway discontinued.
accessing-storage

 FTP gateway discontinued.

10Jan00 entire Revised first edition of LC EZSTORAGE.

13Dec99 entire Draft edition of LC EZSTORAGE manual.

TRG (17Feb04)

EZSTORAGE - 44

UCRL-WEB-200719
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (17Feb04) Contact: lc-hotline@llnl.gov

EZSTORAGE - 45

http://www.llnl.gov/disclaimer.html

